Eberhard Karls Universitit Tiibingen

Mathematisch-Naturwissenschaftliche Fakultat
Wilhelm-Schickard-Institut fiir Informatik

Lehrstuhl fiirr Datenbanksysteme

Bachelor of Science Informatik

CRUSHING BOUNDARIES: OVERCOMING TECHNICAL DEBT BY
USING FULL-STACK FRAMEWORKS

FLORIAN MARTEL
30.04.2025

Gutachter

Pror. DR. TORSTEN GRUST

Betreuer

Tim F1SCHER

Florian Martel:

Crushing Boundaries: Overcoming Technical Debt By
Using Full-Stack Frameworks

Bachelor of Science Informatik

Eberhard Karls Universitit Tiitbingen

01.02.2025 - 30.04.2025

Declaration of Authorship

Hiermit erklire ich, dass ich diese schriftliche Abschlussarbeit selbstéindig verfasst habe, keine anderen
als die angegebenen Hilfsmittel und Quellen benutzt habe und alle wortlich oder sinngemif aus
anderen Werken {ibernommenen Aussagen als solche gekennzeichnet habe. Des Weiteren erklare ich,
dass die Arbeit weder vollstindig noch in wesentlichen Teilen Gegenstand eines anderen Priifungsver-
fahrens gewesen ist.

Ebmﬁzo) 30.06.20°2 8 F.Uoclel

Ort, Datum Unterschrift

iii| Declaration of Authorship

Abstract

With the growing adoption of Software as a Service (SaaS), web applications are increasingly replacing
traditional on-premise software solutions. The conventional approach to web application development
involves separating the frontend and backend by using different frameworks, such as React, Vue.js, or
Angular for the frontend, and Django, Spring Boot, or ASP.NET for the backend. However, this sepa-
ration causes complexities in development and maintenance. Full-Stack frameworks, such as Next.js,
provide a unified development environment that covers both frontend and backend implementation.
This thesis shows how a Full-Stack approach simplifies functionalities like database interaction,
authentication and rendering, using the development of a digital module manual for the University of
Tiibingen as a demonstration of its advantages.

Abstract | iv

Acronyms

API:
CDN:
CI/CD:
CLI:
GHCR:
HTTP:
IDE:
ISR:
JWT:

ORM
0OS:

v | Acronyms

Application Programming Interface
Content Delivery Networ

Continuous Integration and Continuous Deployment
Command Line Interface

GitHub Container Registry

Hypertext Transfer Protocol
Integrated Development Environment
Incremental Static Regeneration
JSON Web Token

Node Package Manager

Object Relational Mapping

Operating System

Representational State Transfer
Search Engline Optimization

Secure Shell

User Interface

Virtual Machine

Contents

Declaration of Authorship ..o i it iii
N 0 E] 8 ' iv
£ 08 1) 517 4 v
1 Introductionooouiiii i i e 8
B0 R 1 1 1= () o 8
1.2, GOALS e 9
1.3 OVRIVIEW ..ttt et ettt e e e e e e e e e 10

2. Fundamentalsooouiiniiiiiiiiiii i i i i e i i 12
2.1, Frameworksot 12

/2 O B 1) < 7 T2 12

2.1.20 PriSIMA . ..o 13

2.1.3. Material Ul ... 13

2., AU S oo e 13

2.2. Development PrOCESSttt 14
2.2.1. Local developmentoooiiiiuu 14

2.2.2. Deployment ..ot 14

2.2.3. Continuous Integration and Continuous Deploymentooo .. 15

3. UserInterfaceoooviiniiiiiiiiiiii it it i i it it 18
3.1, Public Frontendoooiiiiiii i 18
3.2. Restricted Backend 20
3.2.1. Admin Backendoooo 20

3.2.2. Lecturer Backendcooiiiii 21

4. Implementationoouuiiuiiuiiiiiiiii ittt ittt i i i i 24
4.1. Database INTEractioncoitiun ettt ettt ettt et 24
4.1.1. Database Schemao e 24

4.1.2. Queries And Mutationsooouiiiit e 25

4.1.2.1. Client Side Queries Using Server Actionsoveiiiiiiiiiiinnneeen... 25

4.1.2.2. APT ROULES . ettt e 26

T 1T 1§ 27

4.1.3.1. Authenticationooiiiiiiiii e 27

4.1.3.2. Limiting Access to User GIoUpPSccouuiiiiiiiiiiiiiiiiiiin i 28

4.2. Finding the best render strategyoooiiiiiiiii i 30
4.2.1. Server-Side Renderingoiiiiiiiiiiii e 30

4.2.2. Client-Side Renderingooiiiiiiiiiiii e 31

4.2.3. Incremental Static Regeneration ... 32

5. DISCUSSIOM .ttt ittt ittt ittt it ettt tttaasa ettt 34
5.1. Advantages of the Full-Stack Approach ... 34
5.2. Future Improvements 34
5.3, OULlOOK .. 35
Bibliography ..o e 36

Contents | vi

7 | Contents

Introduction

Web applications often evolve from simple tools into complex systems that become harder to maintain
over time. This chapter outlines a real example of such a case: the course management tool “Digitales
Modulhandbuch” used by students at the University of Tiibingen.

Motivation

Students in the Department of Computer Science at the University of Tiibingen are familiar with a
web application that provides an overview of which courses can be assigned to which elective modules
(Figure 1).

Additionally, the application allows students to view detailed information about each course, including
content descriptions and recommended literature (Figure 2).

As a student, this tool helps with deciding which course to take in the semester. In order to do so there
is a filtering feature, allowing students to filter courses for specific semesters, lecturers or assignments.

However, the application suffers from several shortcomings in terms of usability and maintainability.
For example, the semester filtering of a course is implemented by a hard-coded enum, which requires
manual adjustments in the source code from time to time. As well the semester values that indicate
when the course is offered have to be updated manually. Furthermore, there is neither an Continuous
Integration and Continuous Deployment (CI/CD) pipeline nor a version control system, such as
Git. This complicates further development as every code change has to be applied manually on the
production server. The original application is built with Django, a Python-based web framework, and
follows a server-rendered architecture with minimal client-side functionality. As a result, most user
interactions cause full page reloads — for example, switching to the list of master’s courses in Figure 1
reloads the entire interface.

Other features regarding user experience can be improved as well. For instance, when searching for
the Medical Informatics subject area, students must scroll horizontally, even if other subjects are
irrelevant to them (Figure 1). Additionally, User Interface (UI) elements such as filters sometimes
disappear unintentionally during hover interactions. Addressing the mentioned issues is difficult due
to technical debt.

Motivation | 8

Bachelor

A 4 A Q ==

el Lehforn | EGTS | Kennung Dozent

Mathematik fur Informatk... | V, 0 INFM1010 | Dom, Eck

Mathematik fur Informatk... | V, 0 INFM1020 | Dorn, Mer

Praidische Informak 1: D... | V, 0 INFM1110 Grust, Ost.

Prakdische Informatik 2:1... | V, 0 INFM1120 Brachthau

Praklische Informatik 3:S.... | V, 0 INFM2111 Brachtha

Technische Informatik 1: .. | V, 0 INFM1310 | Bringman.

Mathemati for Informatik... | V. 0 INFM2010 | Dom, Levi

Mathematik fur Informatk... | V, 0 INF2021 (B1... | Teun

Praktische Informatik 4:T... | P INFM2110 Brachtha.

Technische Informatk 2:1... | V, 0 INFM2310 | Menth

Technische Informatk 2:1... | V, 0 INF2311 Menth

Theoretische Informak 1...

<

INFM2420 | Kaufmann.

Theoretische Informatik 2... | V, 0 INFM2410 | Hennig. v

Einfunrung in Relationale .. | V, 0 INF3131 Grust

Ausgewahts Themen zu .. | V,0 INF3139 Grust

Graphische Datenverarbe... | V, 0

B
s
s
s
6
6
s
6
Mathemati fir Informati... | V, 0 6 |INF2022(M.. | wechseln
9
s
6
s
s
s
6
9 [MENFM3142 | Lensch
6

Bildverarbeitung V.0 MEINFM3143 | Schiling

Figure 1: User Interface of the module directory

Titel
Mathematik fr Informatik 1: Analysis
o

Arbeitsaufwand Kontakizeit Sebststudium
270h 180n

906 SWS

1 Semester

Im Wintersemestor

Deutsch

Kausur

Vorlesung, Ubung

Themen sind u. & Mengen Relationen natoriche Zahlen), eslle Zahien, Folgen und Reen, Grenzvierte
und Difieentia- und

Die Analysis g i allen Bereichen der

2 den. Durch die
Genauigket entwickelt

Werkzeugen wird argumer
i das Durchi gestarkl

E5 givt keine besonderen Voraussetzungen

Dorn, Eckstein

Wintersemester 2022

Wintersemester 2024

BIOINFI, INFI, MDZINFM, MEINFM

Figure 2: Course details of the module directory
1.2. Goals

Given these problems with the application, the goal of this thesis is to develop a new application that
adopts the functionality of the current one while resolving its usability and maintainability issues.
The redesigned system should provide a more intuitive and responsive user interface, simplify the
development and deployment process, and be easier to maintain and extend.

The scientific goal of this thesis is to explore how the strict boundary between client and server can
be blurred using Next.js as Full-Stack framework. In web development the terms client and server
both refer to computers. The client is responsible for sending requests to the server and displaying
the server’s responses, often through a web browser. A server is a computer that provides resources
to clients over a network. In the context of web development, the server processes incoming client
requests, performs necessary operations and sends back the appropriate responses. Typically, client-
side and server-side code is developed using different frameworks in separate code-bases. Server and
client communicate with each other through an Application Programming Interface (API) such as
Representational State Transfer (REST) or GraphQL. As a result, they do not share the same types,
classes and libraries. This strict separation, often referred to as the network boundary, can lead to
reduced development ergonomics and technical debt.

9 | Introduction

Overview

The source code of the developed application can be accessed on the public GitHub repository [1].

The application is organized as a monolithic’ repository (Listing 1). The main directory — labeled as the
app directory in the source code — implements all URL routes using Next.js—specific files (Section 2.1.1).

The project contains three services. First, there is the primary Next.js application found in the src
directory. Second, a PostgreSQL database is used, with the schema described in schema.prisma. Third,
an optional cronjob server is included, which triggers an API route to update semester data. Although
the application remains functional without the cronjob server, automatic updating of semesters will
not occur in its absence (Section 1.1).

In addition, the repository includes a dedicated deployment setup. It provides GitHub Actions® work-
flows for CI/CD, along with a custom deployment script.

root/
— .github/ # GitHub Actioms for CI/CD
— deployment/ # Files for deployment
— deploy.sh # Bash script for Docker deployment
— server.js # Express.js server for web-hook-based deployment
— prisma/ # Prisma files for database development
— migrations/ # SQL migrations applied to the database
— schema.prisma # Database schema
— public/ # Static assets (images etc.)
— src/ # Next.js Source code
— actions/ # Next.js Server Actions for database interaction
— app/ # Next.js App directory containing all URL routes
— api/ # API routes
|— backend/ # Restricted route for lecturers and admins (auth required)
|— common/ # Open route for students
— components/ # Custom React components
— fonts/ # Fonts
— 1lib/ # Library for custom backend logic
— utils/ # Auth utilities (guard components and logic)
— auth.ts # Auth.js configuration
— paths.ts # Paths
— docker-compose.yml # Compose file for connecting containered services
— Dockerfile # Docker image build script
— package. json # Node dependencies

**

— template.env Template for environment variables

Listing 1: Simplified folder structure of the repository. Only the most important folders and files are
mentioned.

In this context, monolith means that a single repository contains all parts of the application.
*GitHub Actions allow to run tasks like application building on every commit to a remote repository.

Overview | 10

11 | Introduction

Fundamentals

This chapter introduces the frameworks used in the project and explains why they have been chosen. It
also provides an overview of the development process, explaining the techniques involved in building
and deploying the application.

Frameworks

For the implementation, only open source frameworks were used. All frameworks are free to use, have
large communities behind them, and can be customized if needed.

Next.js

Next.js is a React® framework for building Full-Stack web applications [2]. While React itself only
allows client-side functionality, Next.js extends it by creating two server-side runtimes in order to run
a complete application:

+ Node.js* Runtime for server-side rendering and API route logic.
+ Edge Runtime for middleware

While server-side rendering offers many advantages, such as enhanced security by keeping sensitive
data on the server and reducing the need to send large dependency bundles to the client, browser
APIs are not accessible on the server (Section 4.2). To address this, Next.js implements the use client
directive. Files without this directive are executed on the server by default, whereas files marked with
use client Will be sent to the client first and then are executed there.

Next.js supports TypeScript. TypeScript is a syntactic superset for JavaScript that adds static typing,
interfaces, and better tooling like auto-complete and type checking for the Integrated Development
Environment (IDE). Because of these maintenance improvements compared to vanilla JavaScript the
project is developed with TypeScript.

Next.js is sensitive to file naming and folder structure within the app directory. Every folder inside the
app directory turns into a URL route. Files inside these folders cover different functionalities (Table 1).

File Type Description

page.tsx Defines a route segment and renders the content of a page. By default, it is server-
rendered unless marked with use client to enable client-side execution.

layout.tsx Defines a persistent layout that wraps multiple pages. Layouts maintain their state
and do not re-render between navigations.

route.ts Handles API routes. Allows defining backend logic for handling HT TP requests like
GET, POST, PUT, and DELETE.

middleware.ts | Runs logic before a request completes using the Edge runtime. Common use cases

include authentication, logging, and redirection.

Table 1: Next.js file types. There are more file types, which are not discussed in this introduction [3].

*React is an open source JavaScript library for building user interfaces.
*Node.js is an open source JavaScript runtime environment.

Frameworks | 12

Prisma
Prisma is an Object Relational Mapping (ORM) [4]. It consists of three parts:

1. Prisma Client: A type-safe SQL query builder.

2. Prisma Migrate: A Command Line Interface (CLI) for applying database migrations without writing
SQL.

3. Prisma Studio: A UI for database interactions during the development process.

By modifying the schema.prisma file, developers can update the database schema while simultaneously

generating corresponding TypeScript types (Table 2). This enhances maintainability and reduces
runtime errors.

Migrations are a way to version-control changes to the database schema. Prisma stores all migrations
in a migrations directory. The SQL files in this directory can be then used to reconstruct the database.

Prisma Schema Generated TypeScript Type | Generated SQL migration

model User { export declare type User = { | CREATE TABLE "User" (
id Int @id @default id: number "id" SERIAL PRIMARY KEY,
email String Qunique email: string "email" VARCHAR(255) UNIQUE NOT NULL,
name String? name: string | null "name" VARCHAR(255)

} })5

Table 2: Changing schema.prisma generates TypeScript types and SQL migrations
Material Ul

Material Ul is an open source React component library that implements Google’s Material Design [5].
It offers a wide range of components like buttons, chips, alerts, tables or icons. The components can
be used in Next.js page.tsx or layout.tsx files as demonstrated in Listing 2.

import Button from '@mui/material/Button’;

export default function Page() {
return <Button variant="contained">Hello world</Button>;

3
Listing 2: Hello world button with Material UI

Auth.js

Auth.js is an open source authentication library for JavaScript and TypeScript applications [6]. It
provides a flexible and extensible solution for handling user authentication in web applications. In this
application it is used to handle JSON Web Token (JWT) generation and consumption to authenticate
users, so that they can change the courses in the database (Section 4.1.3.1).

13 | Fundamentals

Development Process

Local development
1. Linting with ESLint’

ESLint was used to enforce coding standards and detect potential issues in the code-base. By
integrating a linter into the development workflow, common syntax errors, anti-patterns, and style
inconsistencies can be identified and corrected early in the process. When an inconsistency is found,
the application is not compilable and needs to be fixed first. In order to do so there is a 1int script for
the Node Package Manager (npm). This ensures code quality in production.

2. Type Safety Verification

TypeScript’s --noEmit compiler-flag is used to perform static type checking without generating output
files. This ensures that the code conforms to type definitions preventing build errors. By running the
typecheck script with npm types can be checked. Type errors can then be fixed with the CLI output.

3. Local Feature Testing

Application features were tested in a local development environment to verify their functionality. In
order to do so development environment variables like a development database connection string were
set in a .env file.

4. Database Migrations

Database migrations were used like git commits for the database. Database testing is performed by
pushing a new schema with the prisma db push CLI command. This command does not create a
migration file but runs SQL against the database, which allows testing the database schema before
creating a new migration. After successful implementation of a feature a database migration is then
created with prisma migrate dev.

Deployment

Generally speaking there are three ways to deploy an application to a server (Table 3). As the
application consists of three different services (Next.js application, PostgreSQL Database and cronjob
server), a maintainable way is to package each service in a Docker® container and then connect them
via Docker Compose. In comparison to other approaches like a Virtual Machine (VM) or a bare metal
deployment, a container-based deployment allows to port the app to different machines anytime. As
well containers share the Operating System (OS) host kernel and are therefore lightweight compared
to VMs, because they do not need to boot an entire OS. Therefore a container-based deployment with
Docker was chosen.

*ESLint is an open source linter for JavaScript
*Docker is a platform that packages applications and their dependencies into standardized containers, which can run
consistently across different computing environments.

Development Process | 14

Method Description Advantages Disadvantages
Container-Based | Lightweight virtualiza-| « Resource efficient « Limited isolation
tion that packages appli- | « Portable (shared kernel)
cations into isolated units | « Simple maintenance + Requires orchestration
sharing the host OS. « Easy horizontal scaling | for complex deployments
VM-Based Complete virtualization | « OS flexibility « Higher resource over-
of hardware resources head
with dedicated operating + OS maintenance re-
systems. sponsibility
Bare Metal Direct deployment to |« High performance « Slow provisioning
physical servers without | « Hardware control « Reduced security due to
virtualization. missing isolation

Table 3: Comparing container, VM and bare metal deployment
Continuous Integration and Continuous Deployment

To ensure deployment, a CI/CD pipeline was implemented using GitHub Actions and Docker. This
process automates building, testing, and deploying the application to a production environment. The
pipeline follows three steps:

1. Building via GitHub Actions

On every push to the main branch, GitHub Actions triggers a workflow that builds the Docker image
of the application. This ensures that any change in the code-base results in a deployable artifact. The
build uses the Dockerfile located at the root of the repository and publishes the resulting image to the
GitHub Container Registry (GHCR). This was chosen with respect to the requirement that there is no
build process on the server of the University of Tiibingen.

2. Web-hook Deployment trigger

The most straightforward way of deploying the images would be to access the server by Secure
Shell (SSH) and run bash commands. But the University of Tiibingen blocks the SSH protocol on port
22 during several holidays due to security concerns. To ensure deployment availability all over the
year a web-hook based deployment was chosen. In order to do so a Express.js web server (server. js)
is running and waiting for a POST request. Receiving a POST request the Express.js web server will
execute the bash deployment script.

3. Bash deployment script

First the deployment script from Listing 3 pulls the remote repository via git. This ensures changes
made to docker-compose.yml and deploy.sh will be respected in the deployment process. Currently the
repository publicly accessible. Therefore neither for executing git pull nor for pulling the images
from GHCR GitHub authentication is required. Should the repository become private in future,
authentication can be managed via a GitHub token stored as an environment variable. This is already
implemented in the deployment script. Having pulled the repository and the images the app will be
deployed by Docker Compose.

15 | Fundamentals

#!/bin/bash
log "Starte Deployment-Prozess"
log "Lokaler Pfad: $LOCAL_REPO_PATH"
cd "$LOCAL_REPO_PATH" || handle_error "Konnte nicht ins Repo-Verzeichnis wechseln"
git pull || handle_error "Git pull fehlgeschlagen"
if [! -f docker-compose.yml]; then
handle_error "Docker Compose Datei nicht gefunden"
fi
if [-n "${GITHUB_TOKEN:-}"]; then
log "Authentifiziere bei GitHub Container Registry..."
echo "$GITHUB_TOKEN" | docker login ghcr.io -u "$GITHUB_USERNAME" --password-stdin ||
handle_error "Docker-Login fehlgeschlagen"
fi
log "Starte Docker Compose Up..."

docker compose up -d || handle_error "Docker Compose up fehlgeschlagen"

log "Bereinige ungenutzte Docker-Ressourcen..."

docker system prune -af --volumes || log "Warnung: Docker system prune fehlgeschlagen"
log "Deployment erfolgreich abgeschlossen!"

exit O

Listing 3: Deployment script

Development Process

16

17 | Fundamentals

User Interface

The application features two separate frontends for different user groups: one for students and one for
lecturers and admins.

The Public Frontend is accessible without authentication and is used by students to explore available
courses, check module assignments and view course details. It offers features like searching and

filtering.

The Restricted Backend’, on the other hand, requires authentication and provides administrative access
to course data. Depending on the user role — lecturer or admin — users can view and edit courses.
Admins have extended rights to manage all courses, users, and lecturer assignments, while lecturers
are limited to their own content.

This chapter gives an overview of both interfaces. The Figures are provided with mockup data.
Public Frontend

The Public Frontend contains a redesigned course overview page with a new search functionality
(Figure 3) and filtering options (Figure 4). Instead of covering all fields of study on a single page now
only a single field of study is displayed. Fields of study can be changed through filters. By clicking on
a course in the table or searching for a course a details page is opened (Figure 5). Additionally, a page
containing all lecturers with their assigned courses is implemented (Figure 6).

ZUORDNUNGSTABELLE ~ VERANSTALTUNSVERZEICHNISSE ~ DOZENTEN 2 LOGIN

Pflichtbereich Pflichtoereich Praktische Theoretische Technische Technische
Mathematik Proseminar Informatik Informatik Informatik Informatik

® ® ® ® ® ®

Titel Lehrform ECTS Kennzeichnung Dozent ¥ Pflichtbereich

Introduction to Co... In-Person 5 cs101 Otto Muller

Data Structures a... In-Person 6 cs102 Otto Muller

Database Systems In-Person 5 cs103 Otto Miller

Operating Systems In-Person 5 cs104 Otto Mller

Computer Networks In-Person 5 cs105 Otto Muller

Software Enginee... In-Person 6 cs106 Otto Maller

Artificial Intelligence In-Person 5 cs107 Otto Muller

Machine Learning In-Person 5 cs108 Otto Muller

Computer Graphics In-Person 5 cs109 Otto Muller

Human-Computer... In-Person 5 cs110 Otto Miller

Cybersecurity In-Person 5 csin Otto Muller

Web Development In-Person 5 csti2 Otto Muller

Mobile App Devel... In-Person 5 cs13 Otto Muller

Cloud Computing ~ In-Person 5 cstia Otto Mller

® ® ® © ® ® ® ® ® ® ® ©® ® ©® ©
® ® ® © ® © ® ® ® ® © ® ® 6
® ® ® © ® ® ® ® ©® ©® ® ® ® ®
© ® ® ® ® ® ® © ® ® ® ® ® ®
® ® ® ® ® ® ® ® ® ® ® ® ® ®

Big Data In-Person 5 cs11s Otto Maller

® ® ® © ® © ® © ® ® ® ® ® ® O
® ® O ® ® ® ® ® ® ® ® ® ® ® O

®
®
®
®
®

Blockchain Techn... In-Person 5 cs116

Figure 3: Table with all courses and possible assignments

"The Restricted Backend may sound like a backend service but is a frontend feature in fact.

Public Frontend | 18

Filter

Studiengang

BACHELOR

Anrechenbarkeit

Informatik: Pflichtbereich

Dozent

Otto Miller

Semester

Zuriicksetzen Nachstes Semester

Blockchain Technology

ZUORDNUNGSTABELLE

VERANSTALTUNSVERZEICHNISSE

DOZENTEN

Kennzeichnung Dozent V- Pflichtbereich Feniperech Enentberech Ak
cst01 Otto Maler © ® ® ®
cs102 Otto Miler Q ® ® ®
cs10s Otto Miler Q ® ® ®
cst04 Otto Maler © ® ® ®
cs1z Otto Maler © [@ ®

Figure 4: Filter possibilities for the course Table

Cs116
Arbeitsaufwand Kontaktzeit
105 Stunden 35 Stunden

ECTS 5
Veranstaltungsdauer 1 Semester
Haufigkeit des Angebots Jedes Semester
Unterrichtssprache Englisch
Priifungsform Klausur
Prufungsform In-Person
Inhait Blockchain principles and applications
Qualifikationsziele Leamn about blockchain technology

Lehrform Status Sws cP Prufungsform Prufungsdauer
Lehrinhaite Tutorium aktiv 4 2 Hausarbeit [

Vorlesung aktiv 6 3 Klausur 60
Teilnahmevoraussetzungen Cybersecurity

Dozentiin
Literatur
Zuletzt Angeboten

Geplant fir

19 | User Interface

Mastering Blockchain
Sommersemester 2023

Wintersemester 2023

Figure 5: Course details

Theoretische Technische
Informatik Informatik
® ®

® ®

® ®

® ®

® ®

Zeilen pro Seite:

Selbststudium

70 Stunden

Benotung
Hausarbeit

Kiausur

100 ~

Technische
Informatik
®
®
®
®
®
1-5von 5

Anteil

04

06

ZUORDNUNGSTABELLE ~ VERANSTALTUNSVERZEICHNISSE ~ DOZENTEN 2 LOGIN

Otto Muller
Introduction to Computer Science
CS101 - 5 ECTS - Wintersemester 2023
Data Structures and Algorithms
Database Systems
CS103 - 5 ECTS - Wintersemester 2023
Operating Systems
CS104 - 5 ECTS - Winte
Computer Networks
Software Engineering
CS106 - 6 ECTS - Wintersemester 2023
Artificial Intelligence
Machine Learning
C8108 - 5 ECTS - Winterse
Computer Graphics
CS109 - 5 ECTS - Wintersemester 2023
Human-Computer Int
Cybersecurity
CS111 - 5 ECTS - Wintersemester 2023
Web Development
Figure 6: Courses assigned to their corresponding lecturer
Restricted Backend

The Restricted Backend enables authenticated users to change courses. There are two roles imple-
mented in the authentication service. The LECTURER and the ADMIN role. Whereas lecturers can only
adjust their own courses, admins can adjust any role. The role is assigned in the login process (Figure 7)
and then the right backend will be rendered for the user.

UNIVERSITAT %
TUBINGEN

Sign in to Dozenten
Backend

Welcome, please sign in to continue

Email *

Password *

(] rRemember me

Figure 7: Authentication for backend access
Admin Backend

The Admin Backend implements an overview over all entries (Figure 8) and creation forms like the
course creation form (Figure 9), which creates a new course for the Public Frontend. Before the data
is written to the database, a preview option is available, giving users the chance to verify the course
information. There are similar forms for the creation of a lecturer and a user.® In the user form a
user entry can be assigned to a lecturer, enabling the user to access all course data assigned to the

®Lecturers and users have separate database tables. (Section 4.1.1)

Restricted Backend | 20

lecturer. Every action which changes values in the database triggers a corresponding success or error

notification. (Figure 10)

= UNIVERSITAT
= DNk ?Dozenten Backend

Ubersicht

55 Ubersicht

Hinzufigen
@ Kurse g
© Dozenten v
© Accounts v

= UNIVERSITAT ?
BN Dozenten Backend

Ubersicht

53 Ubersicht

Hinzufugen
@ Kurse v
© Dozenten v
© Accounts v

3.2.2. Lecturer Backend

The Lecturer Backend can not create courses, but only edit assigned ones. In order to do so, there is a

Q Kurse
D Kennung Vorlsungstitel Dozent Kurs Bearbeiten Kurs Loschen
16 csii6 Blockchain Technology OFFNEN []
17 cs17 Quantum Computing OFFNEN]
18 cs118 Robotics OFFNEN [}
19 cstg Natural Language Proces. OFFNEN [
20 cs120 Computer Vision OFFNEN]
Zeilenpro Seite: 5~ 1-5von 20 >
Q Dozenten
D Name Dozent Losch
1 testdozent []
4 Timm Lichte |]
6 Florian Martel [}
ZelenproSette: 5~ 1-3von3
Q Benutzer
1) Name Email Rolle Verkndpft... Verknpft.. Benutzer Losch
€m42us0j00000maxijyqqjud Florian florianmartei01@gmail.com ADMIN]
Tiel
Blockchain Technology
At der Voriesung Lenrform EcTs Kennung
Lecture In-Person 5 Cs116
Prasenzzelt in Stunden Selbststudium in Stunden Gesamter Workl
35 70 105
Pratungstrom Kursdauer in Semester Sprache
Klausur 1 Englisch -
Letztes Angebot (Semester) Letztes Angebot (Jahr) Nachstes Angebot (Semester) Nachstes Angebot (Jah) Semesterperiode
Sommersemester - 2023 Wintersemester - 2023 1
Inhate

Blockchain principles and applications

Qualifkationsziele

Leamn about blockchain technology
Uteratur

Mastering Blockchain

Dozent

Zuordnungen

Voraussetzungen

~ | Cybersecurity

Figure 9: Form for editing (and creating) courses

@ Der Dozent wurde geldscht. X

Figure 10: Notifications after actions

simple overview with all assigned courses for the user (Figure 11).

21 | User Interface

-
= UNIVERSITAT f Dozenten Backend

TUBINGEN
Ubersicnt
B3 Meine Kurse Q Kurse

D Kennung Vorlsungstitel Dozent Kurs Bearbeiten Kurs Loschen

16 cstte Blockchain Technology]
17 cs17 Quantum Computing OFFNEN i

18 cs1g Robotics OFFNEN]
19 cst1e Natural Language Processing]
20 Ccs120 Computer Vision [}

ZeienproSete: 5+ 1-5von5

Figure 11: Overview for lecturers

Restricted Backend ‘ 22

23 | User Interface

Implementation

In this chapter, the implementation patterns that demonstrate how a Full-Stack framework can blur
the traditional network boundary are presented. The focus lies on database interaction and security
considerations. Subsequently, different rendering strategies are analyzed to illustrate how Full-Stack
frameworks enable the combination of server-side and client-side rendering.

Database interaction

This section covers how the application interacts with the database using Prisma as an ORM. It explains
how the database schema is structured, how data is queried or modified through Prisma’s TypeScript
API, and how these operations are integrated into both server- and client-side components.

Database Schema

Language
—+ Deutsch

Englisch
DeutschUndEnglisch

Course

id Int @id

title String
typeOfCourse String
contactTimelnHours Int
selfStudyTimelnHou... Int
workloadInHours Int
durationinSemester Int
courselanguage Language
typeOfExamination String
teachType String

ects Int

code String
lastOfferSemester Semester
lastOfferYear Int
nextOfferSemester Semester
nextOfferYear Int
semesterPeriod Int
contents String
qualificationGoals String
requirements String?
literature String

createdAt DateTime
updatedAt DateTime
assignments Assignment][! I
lecturer Lecturer? >
courseContent CourseContent[]

Semester

Sommersemester
Wintersemester
keineAngabe

UserRole

ADMIN =

LECTURER
CourseContent
id Int @id
title String
teachingMethod String
status String
creditPoints Int User
expectedHoursPer... Int
examType String id String @id
examDurationInMin... Int name String?
grading String email String
gradingSharelnPerc... Float passwordHash String?
createdAt DateTime emailVerified DateTime?
updatedAt DateTime —+ role UserRole

course Course lecturer Lecturer?
createdAt DateTime
updatedAt DateTime

Lecturer

id Int @id

name String

createdAt DateTime
updatedAt DateTime
courses Course[]
User User?

Assignment

mandatory_cs
mandatory_mathematics_cs
mandatory_proseminar_cs
elective_practical_cs
elective_theoretical_cs
elective_technical_cs
elective_info_cs
mandatory_bio_cs
mandatory_proseminar_bio_cs
elective_info_bio_cs
elective_bioinfo_bio_cs
mandatory_media_cs
mandatory_proseminar_media_cs
elective_mediascience_media_cs
elective_mediainfo_media_cs
elective_info_media_cs
mandatory_medic_cs
mandatory_proseminar_medic_cs
elective_info_medic_cs
elective_mediabioinf_medic_cs

Figure 12: Database Schema implemented in schema.prisma’

*The Assignment enum has been shortened due to limited space

Database interaction

24

The structure of the database schema in Figure 12 was developed with respect to practical require-
ments. First, not every lecturer needs an account in the system — some just need to be listed as the
responsible person for a course. Because of that, courses are linked directly to Lecturer entries instead
of the User model, which is used for authentication.

Second, a course can include different types of content, like lectures, tutorials, or exams. To keep things
flexible, Course has a one-to-many relation to CourseContent. The CourseContent rows containing events
like exams and lectures will be rendered on the course details page in a separate table.

Finally, courses can be assigned to different modules across various field of studies. Instead of managing
this on field of study level, all possible assignments are bundled into a single enum. This enables to
assign a course to assignments from different field of studies For example the course “Mathematik
1: Analysis” could be assigned to the field of study “Informatik” on the assignment “Pflichtbereich
Informatik” as well as on the field of study “Bioinformatik” on the assignment “Pflichtbereich Bioin-
formatik”.

Queries And Mutations

Prisma provides a TypeScript-based client library that makes it easy to execute SQL queries from the
server [7]. These queries can be used to interact with the database in a type-safe and readable way. In
the context of this project, most data is fetched on the server before rendering the page (Section 4.2.1),
which keeps the client lightweight.

At the same time, there are cases where the client needs to trigger database operations directly. For
those situations, Server Actions offer a way to bridge the gap.

4.1.2.1. Client Side Queries Using Server Actions

Server Actions are a Next.js feature that blur the boundary between frontend and backend develop-
ment. They allow client components to call backend logic without having to create a REST or GraphQL
API. A Server Action is created by using the use server directive on top of the file. This tells Next.js to
execute the code on the server, even if it’s being called from the client.

Under the hood, Listing 4 creates a POST endpoint’, which runs the query on the server. The query
will retrieve the Course row with the connected Lecturer and CourseContent rows. The ergonomic benefit
of this pattern lies in the usage of this action on the client. Instead of fetching an API endpoint Next.js
allows to treat the endpoint as the function getCourse.

Listing 5 shows how this is implemented in practice: when a user clicks on a course, the Server Action
fetches the relevant data and renders the course details. Using this approach keeps the code clean and
readable, and it also opens the door to simple error handling with try and catch blocks, which is useful
for further development and handling unauthorized access (Section 4.1.3.2).

*The POST endpoint will be open for everyone. There is some basic security logic implemented in Server Actions,
but to make the endpoint truly secure, custom access rules should be added (Section 4.1.3.2).

25 | Implementation

"use server";
export async function getCourse(id: number): Promise<CourseWithLecturerCourseContent | null> {
const resp = await prisma.course.findUnique(

{
where: {
id: id
3,
include: {
lecturer: true,
courseContent: true
}
}

);
return resp;

}
Listing 4: Example implementation of a basic Server Action. The code will be executed on the server,
but the function can be used on the client.

"use client";
function CourseDialog({ open, courseld }: PreviewDialog) {
const [course, setCourse] = React.useState<CourseWithLecturerCourseContent | null>(null);

React.useEffect(() => {
if (courseId) {
getCourse (courseld) .then(setCourse)
}
}, [courseId]);

if ('courseld || !'course) return null;

return (
<Dialog open={open} maxWidth={"x1"} fullWidth>
<DialogTitle>Kursdetails</DialogTitle>
<DialogContent>
<CourseDetails course={course} />
</DialogContent>
<DialogActions>
<Button variant="contained" onClick={() => {
setPreviewDialogOpen(prev => ({ ...prev, open: false }));
}} color="secondary"
>
Schlieflen
</Button>
</DialogActions>
</Dialog >
)

Listing 5: Using Server Actions in client components

4.1.2.2. API Routes

API Routes are another Next.js feature that blur the boundary between frontend and backend devel-
opment. They allow to implement backend logic directly within the application’s folder structure,
without the need for a separate server or framework.

To create an API route, a route.ts file is added within a folder in the app directory. Inside that file,
functions can be exported that correspond to HTTP methods like GET, POST, PUT, or DELETE.

In this application, API Routes are used in two scenarios:

Database interaction | 26

« Authentication: Auth.js uses API Routes to manage login and session handling.
- Semester updates: A cron job triggers an API Route that updates semester values in the database
when a new semester begins.

Listing 6 implements the semester API Route, without the need of a stand-alone backend runtime.
Using the property semesterPeriod, which is set by the lecturer, all course rows will be updated to
ensure the correct semester is displayed for the next offering of the course. Nevertheless using an API
Route for this use case creates another dependency: a cronjob server. A lightweight alternative for the
update process could be using database functions. This will be discussed in Section 5.2.

export async function POST(request: Request) {

const validApiKey = process.env.CRONJOB_API_KEY;
const providedKey = request.headers.get('x-api-key');

if (!validApiKey || providedKey !== validApiKey) {

return NextResponse.json({ error: 'Unauthorized' }, { status: 401 });
}
try {

const courses: Course[] = await prisma.course.findMany();
const { semester: currentSemester, year: currentYear } = getCurrentSemester();
courses.map(async (course) => {
const checkUpdate = course.nextOfferYear <= currentYear
&% course.nextOfferSemester === currentSemester
if (checkUpdate) {
const { semester, year } = increaseSemester (course.nextOfferSemester,
course.nextOfferYear, course.semesterPeriod);
await prisma.course.update ({
where: {
id: course.id
},
data: {
lastOfferYear: course.nextOfferYear,
lastOfferSemester: course.nextOfferSemester,
nextOfferYear: year,
nextOfferSemester: semester

B;

B;

return NextResponse.json({ message: 'Semester updated successfully.' }, { status: 200 });

} catch (error) {
if (error instanceof Error) {
return NextResponse.json({ error: error.message }, { status: 500 });

}
return NextResponse.json({ error: 'An unknown error occurred' }, { status: 500 });
}
}
Listing 6: Implementation of an API route for semester updates
Security

This section outlines how authentication and access control are implemented in the project. It covers
how users are authenticated and how access to sensitive operations is restricted based on user roles.

4.1.3.1. Authentication

Generally speaking there are two concepts for authentication.

27 | Implementation

Session-based authentication operates by maintaining session state on the server. When a user
logs in successfully, the server creates a new session with a unique identifier, stores session data in
a database, and returns the session ID to the client as a cookie. For each request, the server has to
validate this session ID against stored sessions.

Token-based authentication offers a stateless alternative. With JWT, the server generates a token
containing user identity information and permissions, which is then cryptographically signed [8]. The
token is returned to the client. The server validates the token’s signature without database interaction.
This approach allows verification without maintaining session states. On the other hand it is impossible
to invalidate JWT once they are set.

Given the app requirements, JWT authentication was chosen for the following reasons:

« No Major Security Concerns: The user base is relatively small, reducing the risk of token misuse.
While JWTs cannot be invalidated once issued, the limited number of users minimizes potential
threats.

« Simpler Implementation: JWT authentication requires no additional session storage on the server,
simplifying the database architecture.

The JWTs are stored in HttpOnly-Cookies'* and every HTTP request will send these cookies in the
request header [9]. This allows user authentication to be handled entirely on the server by reading the
session from the headers. While it’s also possible to access cookies on the client using browser APIs,
this project currently has no use case that requires client-side authentication logic.

To protect the Restricted Backend from unauthenticated access, the app uses AuthGuards like Listing 7.
AuthGuards are custom React server components designed to wrap both server and client components.
They check if a valid session exists and, if not, redirect the user to the login page. This keeps protected
parts of the Ul secure without cluttering each individual component with access logic.
export const AuthGuard: React.FC<AuthGuardProps> = async ({ children }) => {
const session = await auth();
if (!session) {
redirect(paths.signIn);
}

if (session) {
return <>{children}</>;
}

return null;
};
Listing 7: Basic AuthGuard component

4.1.3.2. Limiting Access to User Groups

Not every user should have access to all data. Lecturers should only be able to view and edit their
own courses, while admins can manage everything. Since JWTs are included in the request headers,
the server can extract and decode them to determine the user’s role. This allows custom security logic
to be implemented based on user groups. However, guarding UI components isn’t enough — Server
Actions also need protection. By default, Server Actions are exposed as POST endpoints. Without
proper checks, anyone could trigger these actions. To prevent that, access control must be enforced
inside the Server Action itself.

To help mitigate some of the risks, Next.js assigns Action IDs to Server Actions. These IDs allow the
client to reference the correct action without exposing implementation details. By default, the IDs are

"'Using the HttpOnly flag will ensure that the cookie isn’t changeable through client side JavaScript.

Database interaction | 28

cached for up to 14 days. This mechanism helps to limit the risk of abuse if an authentication layer is
missing — but it’s not a substitute for proper access control. Server Actions should always be treated
like public HTTP endpoints [10].

To enforce access control, the helper function shown in Listing 8 is used to verify whether a user has
permission to access a course. This function is called within the Server Action itself. If access is denied,
an error is thrown (Listing 9). On a stand-alone frontend/backend architecture this error could not be
handled on the client. Instead it would be necessary to return an error HTTP response and then handle
the response on the client. However, since Next.js Server Actions can be used like regular functions
on the client, the error can be caught directly using try and catch, as shown in Listing 10. This allows
for cleaner and more ergonomic error handling in React components.

As an alternative to implementing custom logic in Server Actions, PostgreSQL’s Row Level Security
(RLS) [11] could also be used to restrict access at the database level. Although RLS is more secure,
it would be more difficult to display error messages to the user. For this reason, the project uses
application-level logic for access control.

async function checkLecturerAccess(courseld: number) {

const session = await auth();
if (session?.user?.role == UserRole.ADMIN) return true;

const checkCourse: Course | null = await prisma.course.findUnique ({

where: {
id: courseld
},
»;
const lecAccess = checkCourse?.lecturerId == session?.user?.lecturerld &&

session?.user?.role == UserRole.LECTURER

return lecAccess

Listing 8: Helper function for Securing Server Actions

if (lawait checkLecturerAccess(id)) throw new Error("Not authorized");

Listing 9: Example of Error throwing inside a Server Action

try {
const resp = await updateCourse(courseData.id, course);
notification.show(resp.title + ' wurde erfolgreich aktualisiert.', {
severity: '"success",
autoHideDuration: 3000,
b

} catch (error) {
notification.show('Fehler beim Aktualisieren des Kurses:' + error, {
severity: "error",
autoHideDuration: 3000,
DN

Listing 10: Error handling on the client after triggering Server Actions

29 | Implementation

Finding the best render strategy

In general, all websites follow the same Request-Response-Lifecycle:

1. User Action: The cycle begins when a user interacts with a web interface by navigating to a URL,
clicking a link, or submitting a form.

2. HTTP Request: The client constructs an Hypertext Transfer Protocol (HTTP) request containing
the method (GET, POST etc.), headers, and any necessary data.

3. Server Processing: The server processes the request through routing, authentication, data opera-
tions, and application logic.

4. HTTP Response: The server returns an HTTP response containing a status code, headers, and the
requested resources.

5. Client: The client interprets the status code and parses the resources to render the UL

Next.js is capable of handling different rendering strategies (Table 4). The chosen rendering strategy
determines at which stage of the Request-Response-Lifecycle the page content is generated. In this
project client-side rendering, server-side rendering and Incremental Static Regeneration (ISR) were
used for different use cases.

Render strategy Description

Client-Side Rendering The browser receives minimal HTML and JavaScript, then ren-
ders the page dynamically on the client. All data fetching and
page assembly occurs in the browser after initial load.

Server-Side Rendering The server generates the full HTML for a page on each request.
The client receives HTML, enabling faster initial page loads and
improved Search Engine Optimization (SEO) compared to client-
side rendering.

Static Site Generation Pages are pre-rendered at build time rather than on each request.
This approach creates static HTML files that can be served
quickly from a Content Delivery Network (CDN), providing
optimal performance for pages with content that doesn’t change
frequently.

Incremental Static Regeneration | An extension of Static Site Generation that allows specific pages
to be regenerated in the background after deployment. This
enables static content to be updated without rebuilding the entire
site.

Streaming SSR An advanced form of server-side rendering where HTML is
streamed to the client progressively as it's generated, allowing
parts of the page to be displayed before the entire response is

complete.

Table 4: Comparing different render strategies. There are more possible render strategies, which are
not implemented by Next.js. [12]

Server-Side Rendering

Server-side rendering is the default render method, when a page.tsx file is created within the Next.js
app directory. One major advantage of server-side rendering is that updated data from the database is
reflected immediately after a page reload. Additionally, content is rendered as part of the initial page

Finding the best render strategy | 30

load, contributing to a faster First Contentful Paint**.

For example, Listing 11 shows how the dashboard of an authenticated user is rendered entirely on the
server. First, the user’s role is extracted from the request headers. Based on that role, the corresponding
database queries are constructed. If the user is a lecturer, only their own courses are fetched and
passed to the CourseOverview component. If the user is an admin, two additional queries are executed to
retrieve all User and Lecturer entries. In this case, a more detailed version of the dashboard is rendered,
providing broader management capabilities.

export default async function Dashboard() {

const session = await auth();
const userRole = session?.user?.role;

let query: FindManyQuery = {
include: {
lecturer: true,

},
}
if (userRole == UserRole.Lecturer) {

query = { ...query, where: { lecturerId: session.user.lecturerId } }

}
const allCourses = await prisma.course.findMany(query);
if (userRole == UserRole.Lecturer)

return (

<CourseOverview courses={allCourses} />
)

const allLecturers = await prisma.lecturer.findMany();
const allUsers = await prisma.user.findMany(
{
include: {
lecturer: true

);
return (
<Grid container spacing={2}>
<Grid size={12}>
<CourselOverview courses={allCourses} />
</Grid>
<Grid size={12}>
<LecturerOverview lecturers={alllLecturers} />
</Grid>
<Grid size={12}>
<UserOverview users={allUsers} />
</Grid>
</Grid>

Listing 11: Using server-side rendering to implement role-based logic
Client-Side Rendering

Client-side rendering allows the usage of browser APIs and React hooks such as useState or useEffect.
This makes it the preferred choice for interactive components — especially those that require dynamic
updates based on user input. A common pattern is to render the overall structure of the page (such as
navigation bars or grid layouts) on the server, and delegate only small, interactive components to the
client as implemented in Figure 13.

**First Contentful Paint is a performance metric that measures the time from when a page starts loading to when any
part of its content (text, image, canvas, etc.) is first rendered on the screen.

31 | Implementation

Rendering the table component on the client simplifies the implementation of filtering. While the
initial course data is fetched on the server, it is passed to a client-side component where filtering takes
place. Instead of rendering all entries at once, users can dynamically choose which courses they want
to display in the table. Each time a filter is changed, the table component re-renders on the client
without needing to communicate with the server.*

This behavior is made possible by React’s usestate hook [13], which updates the component state and
automatically triggers a re-render whenever the state changes.

ZUORDNUNGSTABELLE ~ VERANSTALTUNSVERZEICHNISSE ~ DOZENTEN 2 LOGIN

=
Tiel Lehrform EcTs Kennzeic nnung Dozent Pflchtbereich Pllichtberelch M... Plichibereich Pro.. Praklische Inform... Theorelische Info... Technische Infor... Technische Infor.
Introduction to Com... In-Person 5 csto1 testdozent © ® ® ® ® ® ®

Data Structures and... In-Person 5 cst02 testdozent (%) ® ® ® ® ® ®

Database Systems In-Person 5 cs103 testdozent () ® ® ® ® ® ®

Operating Systems In-Person 5 csto4 testdozent © ® ® ® ® ® ®

Web Development In-Person 5 csit2 testdozent (%] (%] o ® ® ® ®

Zellen pro Seite: 100 v 1-5von 5

Figure 13: Demonstration of a client component. Only the orange marked component is rendered on
the client. The rest of the page is served statically or rendered on the server.

Incremental Static Regeneration

In contrast to the Restricted Backend, the Public Frontend does not require role-based rendering or
real-time data updates. All users see the same content, and the information displayed — such as
course listings — does not change frequently. These conditions make it a great use case for ISR.
Next.js supports ISR through the revalidate directive, which allows pages to be statically generated
at build time and then updated in the background at specified intervals. This approach combines the
performance of static pages with the flexibility of server-rendered updates.

Listing 12 shows how ISR is implemented for the course details overview. The revalidate directive
defines a revalidation interval of 3600 seconds. Within this period, Next.js follows the following
process:

1. Initially renders the page at build time or upon the first request

2. Caches the generated HTML and serves it to all visitors

3. On the first request after the revalidation interval, triggers a background regeneration of the page
4. Replaces the cached content with the updated version once regeneration is complete

This mechanism effectively combines the benefits of static site generation with those of server-side
rendering. It reduces load on the database and amplifies page load times, while still keeping the content
reasonably up to date.

Although this time-based strategy is already quite efficient, Next.js supports a more flexible approach:
tag-based revalidation. Instead of waiting for a timer to expire, content can be revalidated when data
actually changes. This works well with REST API-based data fetching via the fetch API as shown in

* After the initial page load, the user could lose the internet connection and filtering would still work since all logic
is handled locally.

Finding the best render strategy | 32

Listing 13. In this example the function revalidateTag('posts') can be then used in Server Actions
to regenerate all pages implementing the tagged endpoint. In the current application this could be
implemented when fetching API Routes, but due to the usage of Prisma as ORM instead of a REST
API the taggable fetch API is not usable. Instead the unstable_cache function has to be used for tagging
ORM database request for revalidation [14]. Although this would be possible this project does not
implement unstable_cache because the API is unstable and may change in the future.

export const revalidate = 3600

export default async function Veranstaltungsverzeichnisse() {
const rows = await prisma.course.findMany(

{
include: {
lecturer: true,
courseContent: true
}
}
);
return (
<Stack spacing={5} sx={{ mx: 12, mt: 8 }}>
{rows.map((row) => (
<CourseDetails key={row.id} course={row} />
N}
</Stack>
);

Listing 12: Using the revalidate directive to enable ISR

const data = await fetch('https://api.vercel.app/blog', {
next: { tags: ['posts'] 1},
b

Listing 13: Tagging routes with the fetch API

33 | Implementation

Discussion

This chapter reflects on the advantages of the chosen architecture, points out areas where the project
could be improved, and looks ahead at how future developments might shape similar applications.

Advantages of the Full-Stack Approach

1. Reduced Network Boundaries

Using Next.js as a Full-Stack framework significantly reduces the traditional separation between
frontend and backend development. With features like Server Actions, client components can directly
interact with server-side logic and the database — avoiding the need for manually defining REST API
endpoints. Server and client rendering are separated using the use client directive. The application
is designed to render as much as possible on the server, while client-side rendering is reserved for
interactive components, such as filtering tables. The Full-Stack approach allows using the use case
specific advantages of different render strategies within the same code-base.

2. Improved Developer Experience

Thanks to Prisma and TypeScript, the application benefits from strong type safety throughout the
entire stack. Linting and type checking are integrated using npm scripts to catch issues early in
the development process. Additionally, a CI pipeline ensures that the application is built and tested
automatically, removing the need for manual deployments on the production server.

Future Improvements

1. Test Coverage

Currently, the project includes only basic checks like linting and type checking. There are no unit
or integration tests for actual functionality. Introducing proper test coverage, including unit tests,
integration tests and end-to-end tests, would improve the application’s reliability.

2. Mobile Optimization

The application is currently designed for desktop screens. While it is accessible on mobile devices, the
user experience is not fully optimized. Future iterations could include responsive design improvements
to better support smaller screens.

3. Enhanced Cache Invalidation

The current implementation of ISR uses time-based revalidation. While this is effective, a more
advanced method could be achieved using the unstable_cache API once it becomes stable. This would
allow for tag-based invalidation, enabling updates to be triggered on actual data changes, rather than
time intervals.

4. Simplifying The Service Architecture

The semester update process currently requires a separate cronjob server, which triggers an API route
to run database mutations. A simpler alternative could involve using a PostgreSQL extension such as
pg_cron [15] to run a database function allowing the cronjob and the function to run directly within
the database engine. This removes the need for an external cronjob service.

Future Improvements | 34

Outlook

The implementation presented in this thesis illustrates a unified Full-Stack architecture that collapses
the traditional boundaries between frontend and backend. By using a framework like Next.js in
combination with TypeScript-aware tools (Prisma, Auth.js, Material Ul), teams can maintain a single
code-base where data models, API logic, and UI components share the same types and conventions.

But despite the ergonomic benefits and shared data models enabled by Full-Stack architectures, this
development approach also presents several limitations. One key drawback is performance. While
TypeScript offers static typing and improved tooling, it remains a superset of JavaScript and thus
inherits its runtime characteristics. In compute-intensive scenarios, it cannot match the raw perfor-
mance of languages like Java with Spring Boot or .NET. These alternatives benefit from real static
compilation, which allow for deep performance optimizations that JavaScript engines, such as V8 used
in Node.js, are inherently limited in providing.

Although recent efforts in the TypeScript ecosystem — such as the 2025 introduction of the new
compiler written in Go — aim to optimize the development process, these improvements focus on
build-time performance. The runtime environment remains bound to JavaScript, and as a result, the
performance ceiling is relatively fixed. Therefore, from a long-term perspective, although the Full-
Stack Next.js monolith brings several ergonomic benefits it may not represent the future of web
application development. While the ergonomic benefits simplify development workflows and reduce
boilerplate, they do not necessarily translate into technical superiority. An equivalent application
could be implemented using a distributed architecture — separating frontend and backend services —
without sacrificing performance.

Furthermore, the growing integration of Al-assisted development tools like GitHub Copilot, Claude
Code, and Cursor Al might fundamentally shift the importance of developer ergonomics. These tools
are capable of reasoning over entire code-bases — including data schemas — regardless of whether type
annotations exist. This could reduce the cognitive overhead traditionally mitigated by TypeScript. As
Al models become more context-aware and deeply embedded in the development process, the trade-off
between ergonomic convenience and architectural flexibility may shift. It is possible that applications
developed with distributed frontends and backends could reach similar levels of productivity.

In conclusion, although Next.js monoliths currently offer a developer-friendly approach, their long-
term viability will depend on how future tools and performance demands evolve. The increasing
influence of Al in development workflows may favor architectures that prioritize performance over
ergonomic consistency.

35 | Discussion

Bibliography

Florian Martel, “Application GitHub repository.” Accessed: Apr. 23, 2025. [Online]. Available:
https://github.com/flovallel/digitales-modulhandbuch

Vercel, Inc., “Next.js Documentation” Accessed: Feb. 25, 2025. [Online]. Available: https://nextjs.
org/docs

Vercel, Inc., “Next.js Project Structure” Accessed: Mar. 21, 2025. [Online]. Available: https://
nextjs.org/docs/app/getting-started/project-structure

Prisma Data, Inc., “Prisma Documentation.” Accessed: Feb. 25, 2025. [Online]. Available: https://
www.prisma.io/docs/orm/overview/introduction/what-is-prisma

Material UI SAS, “Material Ul Documentation.” Accessed: Apr. 15, 2025. [Online]. Available:
https://mui.com/material-ui/getting-started/

Balazs Orban and Team, “Auth.js Documentation.” Accessed: Apr. 26, 2025. [Online]. Available:
https://authjs.dev/getting-started

Prisma Data, Inc., “Prisma TypeScript library” Accessed: Apr. 14, 2025. [Online]. Available:
https://www.prisma.io/docs/orm/prisma-client

Internet Engineering Task Force, “RFC7519: JSON Web Token (JWT).” Accessed: Feb. 28, 2025.
[Online]. Available: https://datatracker.ietf.org/doc/html/rfc7519

Internet Engineering Task Force, “RFC6265: HTTP State Management Mechanism.” Accessed:
Feb. 28, 2025. [Online]. Available: https://datatracker.ietf.org/doc/html/rfc6265

Vercel, Inc., “Nextjs Securing Server Actions” Accessed: Apr. 17, 2025. [Online].
Available: https://nextjs.org/docs/app/building-your-application/data-fetching/server-actions-
and-mutations#security

The PostgreSQL Global Development Group, “Postgres Documentation on RLS.” Accessed: Feb.
27, 2025. [Online]. Available: https://www.postgresql.org/docs/current/ddl-rowsecurity.html

V. N. S. K. Challa, “Comprehensive Analysis of Modern Application Rendering Strategies:
Enhancing Web and Mobile User Experiences,” journal of Engineering and Applied Sciences
Technology, vol. 4, no. 4, pp. 1-6, 2022, doi: 10.47363/JEAST/2022(4)248.

Meta Platforms, Inc, “React useState API Reference.” Accessed: Apr. 14, 2025. [Online]. Available:
https://react.dev/reference/react/useState

Vercel, Inc., “Next.js unstable_cache APL” Accessed: Mar. 13, 2025. [Online]. Available: https://
nextjs.org/docs/app/api-reference/functions/unstable_cache

Citus Data, “Pg_cron - a simple cron-based job scheduler” Accessed: Mar. 19, 2025. [Online].
Available: https://github.com/citusdata/pg_cron

Outlook | 36

https://github.com/flovalle1/digitales-modulhandbuch
https://nextjs.org/docs
https://nextjs.org/docs
https://nextjs.org/docs/app/getting-started/project-structure
https://nextjs.org/docs/app/getting-started/project-structure
https://www.prisma.io/docs/orm/overview/introduction/what-is-prisma
https://www.prisma.io/docs/orm/overview/introduction/what-is-prisma
https://mui.com/material-ui/getting-started/
https://authjs.dev/getting-started
https://www.prisma.io/docs/orm/prisma-client
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc6265
https://nextjs.org/docs/app/building-your-application/data-fetching/server-actions-and-mutations#security
https://nextjs.org/docs/app/building-your-application/data-fetching/server-actions-and-mutations#security
https://www.postgresql.org/docs/current/ddl-rowsecurity.html
https://doi.org/10.47363/JEAST/2022(4)248
https://react.dev/reference/react/useState
https://nextjs.org/docs/app/api-reference/functions/unstable_cache
https://nextjs.org/docs/app/api-reference/functions/unstable_cache
https://github.com/citusdata/pg_cron

	Abstract
	Acronyms
	Introduction
	Motivation
	Goals
	Overview

	Fundamentals
	Frameworks
	Next.js
	Prisma
	Material UI
	Auth.js

	Development Process
	Local development
	Deployment
	Continuous Integration and Continuous Deployment

	User Interface
	Public Frontend
	Restricted Backend
	Admin Backend
	Lecturer Backend

	Implementation
	Database interaction
	Database Schema
	Queries And Mutations
	Client Side Queries Using Server Actions
	API Routes

	Security
	Authentication
	Limiting Access to User Groups

	Finding the best render strategy
	Server-Side Rendering
	Client-Side Rendering
	Incremental Static Regeneration

	Discussion
	Advantages of the Full-Stack Approach
	Future Improvements
	Outlook

	Bibliography

